
ARTICLE IN PRESS
international dental journal 0 0 0 ( 2 0 2 4 ) 1 − 1 3
Concise review
Applications of Artificial Intelligence in Dental
Medicine: A Critical Review
Symeon Sitaras a, Ioannis A. Tsolakis b,c, Marina Gelsini a,
Apostolos I. Tsolakis c,d, Falk Schwendicke e, Thomas Gerhard Wolf f,g*,
Paula Perlea h

a Private Practice, Thessaloniki, Greece
bDepartment of Orthodontics, School of Dentistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
cDepartment of Orthodontics, C.W.R.U., Cleveland, Ohio, USA
dDepartment of Orthodontics, National and Kapodistrian University of Athens, School of Dentistry, Athens, Greece
eDepartment of Conservative Dentistry and Periodontology, Ludwig-Maximilians-University (LMU), Munich, North

Dakota, Germany
fDepartment of Restorative, Preventive and Pediatric Dentistry, School of Dental Medicine, University of Bern, Bern,

Switzerland
gDepartment of Periodontology and Operative Dentistry, University Medical Center of the Johannes Gutenberg-Univer-

sity Mainz, Mainz, Germany
hDepartment of Endodontics, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
A R T I C L E I N F O

Article history:

Received 14 October 2024

Accepted 12 November 2024

Available online xxx
Abbreviation: AAE, American Association o
the jaw; CAD/CAM, Computer-aided design/
decision support; CDSS, Clinical decision su
Reporting Trials; CR, Composite resin; CT, Co
alveolar nerve; ML, Machine learning; NN, N
Bias ASsessment Tool; QUADAS-2, QUality A
tions for Interventional Trials; STARD, Standa
arthritis; TRIPOD, Transparent Reporting of
fracture; 3D, Three-dimensional
* Corresponding author. Thomas GerhardWo

Medicine, University of Bern, Freiburgstrasse
E-mail address: thomas.wolf@unibe.ch (T.

Falk Schwendicke: http://orcid.org/0000-0003
Thomas GerhardWolf: http://orcid.org/0000-0
https://doi.org/10.1016/j.identj.2024.11.009
0020-6539/� 2024 The Authors. Published by
the CC BY license (http://creativecommons.or
A B S T R A C T

Introduction: Artificial intelligence (AI), including its subfields of machine learning and deep

learning, is a branch of computer science and engineering focused on creatingmachines capa-

ble of tasks requiring human-like intelligence, such as visual perception, decision-making, and

natural language processing. AI applications have become increasingly prevalent in dental

medicine, generating high expectations as well as raising ethical and practical concerns.

Methods: This critical review evaluates the current applications of AI in dentistry, identify-

ing key perspectives, challenges, and limitations in ongoing AI research.

Results: AI models have been applied across various dental specialties, supporting diagno-

sis, treatment planning, and decision-making, while also reducing the burden of repetitive

tasks and optimizing clinical workflows. However, ethical complexities and methodologi-

cal limitations, such as inconsistent data quality, bias risk, lack of transparency, and lim-

ited clinical validation, undermine the quality of AI studies and hinder the effective

integration of AI into routine dental practice.

Conclusions: To improve AI research, studies must adhere to standardized methodological

and ethical guidelines, particularly in data collection, while ensuring transparency, pri-

vacy, and accountability. Developing a comprehensive framework for producing robust,
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reproducible AI research and clinically validated technologies will facilitate the seamless

integration of AI into clinical practice, benefiting both clinicians and patients by improving

dental care.

� 2024 The Authors. Published by Elsevier Inc. on behalf of FDI World Dental Federation.

This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/)
Fig. 1 –Artificial intelligence and its subfields.
Introduction

Over the past few years, there has been an outburst of

research studies as well as applications of artificial intelli-

gence (AI) technologies that have a significant impact on

today’s society and affect almost every aspect of human life.

AI-based models are utilized in a wide range of applications

from self-driving cars and voice assistants to medical diagno-

sis and financial analysis. In the field of medicine and specifi-

cally in dental science, AI algorithms have been implemented

in almost every specialty, aiding the practitioner in the diag-

nosis, treatment planning, and decision-making process.

Overview of AI

Artificial intelligence (AI)
AI is a field of computer science and engineering that focuses

on creating machines capable of performing tasks that typi-

cally require human intelligence, such as visual perception,

speech recognition, decision-making, and natural language

processing. The history of AI can be traced back to the mid-

20th century when a group of researchers coined the term

"artificial intelligence" and began to explore the possibility of

creating intelligent machines. AI became increasingly popu-

lar, particularly in the fields of medicine and healthcare, dur-

ing the early 21st century as machine learning was able to

solve numerous academic and industrial problems thanks to

the utilization of advanced computer hardware, novel meth-

odologies, and the accumulation of vast amounts of data.1

Artificial Intelligence is a broader term that incorporates the

subfields of Machine Learning (ML), Neural Networks (NN),

and Deep Learning (DL) (Figure 1).

Machine learning (ML)
ML is the development of computer systems that use algo-

rithms and statistical models to find structures and patterns

within data. These algorithms can learn and adapt each time

new data are introduced and consequently improve over

time, without human input. ML techniques include linear

regression, logistic regression, naive Bayes, decision tree,

nearest neighbor, random forest, discriminant analysis, sup-

port vector machine, and neural network (NN).2

Neural network
A neural network (NN) is a construct of algorithms that com-

pute signals via artificial neurons through a process that

mimics the human brain and the biological NN. Through

interconnection, NN can explore nonlinear information in

the data, and recognize underlying patterns in input informa-

tion and respond with an appropriate output. A typical NN

has an input layer, consisting of one or more input variables,
one or more hidden layers or nodes, and an output layer,

which has one or more neurons. The association between the

input variables and the outcome is depicted through the hid-

den layers (Figure 2).3
Deep learning (DL)
DL is a subfield of ML, based on artificial neural network

(ANN). The most common DL architecture is the convolu-

tional neural network (CNN). It uses multiple processive

layers to progressively extract higher-level features from the

raw input and detect nonlinear patterns in the data, a process

common to any artificial neural network (ANN). What distin-

guishes convolutional neural networks (CNNs) is their use of

the convolution operation, which enhances feature extrac-

tion. CNNs are mainly used for the analysis of complex imag-

ery data. By using multiple hidden layers, they can extract

and detect image features like edges, corners, and macro-

scopic patterns.4,5
Data analytics and clinical decision support systems (CDSSs)
in healthcare

We are currently experiencing a digital revolution that has

largely automated and reshaped the medical as well as the

dental field. The vast amount of data collection and process-

ing and the advanced computing solutions that have risen

over the last 20 years boosted the research and gave birth to

novel applications that utilize AI algorithms creating new

pathways for modern healthcare delivery (Figure 3). The

progress of information technology (IT) promoted the

http://creativecommons.org/licenses/by/4.0/


Fig. 3 –Timeline of artificial intelligence.

Fig. 2 –Neural network structure.
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explosion of stored data and the adoption of electronic

health records, paving the way toward a more digitalized

approach. The stages that characterize digital health care

are data collection, data sharing and data analytics.6

Advancements in AI technologies have enabled the next

stage of digitization to emerge. By exploring associations

and effectively analyzing patterns within the data, big data

analytics have the potential to enhance care provision and

lower costs7. Additionally, the fusion of IT with the health-

care industry gave birth to clinical decision support systems

(CDSSs).8 CDSSs are computer programs that use high-end

computational resources and analytical methods to provide

expert support to medical professionals and improve the

clinical workflow. CDDSs have been a part of medicine for

the past several decades, improving clinical decision-mak-

ing,9 and supporting the delivery of quality care,10 whilst

reducing the frequency and consequences of errors. An inte-

gral part of AI applications in healthcare involves the use

and development of CDSSs.11

Development of AI models

The development of an efficient AI model requires the collec-

tion of high-quality data sets. Raw data should be cleaned

and processed, with data mining focused on extracted valu-

able insights rather than simply cleaning. This process helps

to remove redundant features and duplicates, manage miss-

ing data, and cross-relate data from different sources.12 After
the collection and refinement of the data, an effective meth-

odology must be selected. ML strategies involve supervised

and unsupervised learning.13,14 The most common learning

strategy is supervised learning. In supervised learning, prede-

termined input and output data sets are provided to train the

algorithm (training set). Then, after the adjustment of the

parameters (validation set), the model is tested (test set). The

aim is to design a model that when given new input data, can

predict accurately the outcome. Supervised learning is more

commonly used for image analysis in healthcare due to its

ability to provide clinically relevant results. However, in areas

such as text, speech, and certain healthcare applications,

unsupervised learning is becoming increasingly prevalent. In

unsupervised learning, algorithms work with unlabeled data

to identify hidden patterns and relationships between fea-

tures, operating without predefined outcomes.

AI and dental applications

AI innovative new techniques and applications have also

taken by storm the dental community.15,16 Research studies

around new applications have exploded, especially in the last

decade, covering various domains of the field. Advanced diag-

nostic and treatment tools that utilize AI algorithms have

been developed to support clinicians in providing optimum

and personalized dental care. These models exhibit promis-

ing results, sometimes outperforming experienced special-

ists, thus creating new possibilities for a more structured and
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time-efficient approach towards dental science. This rapid

advancement has raised not only high expectations but also

certain concerns regarding the planning of the research and

the applicability of some applications. AI historically has

lived through phases of generalized hype and excitement, as

well as phases of disappointment, often referred to as AI

“winters”. During those phases both the interest and the

funding were significantly decreased, resulting in the overall

reduction of AI developments. As we are now experiencing a

rapid increase in AI research it is also crucial to address the

limitations that several studies present along with the ethical

dimensions of the subject, to increase the reliability and

robustness of AI-related studies and ultimately avoid another

“winter”. The aim of this study is to a. review the existing

applications of artificial intelligence in dental medicine tak-

ing into consideration all the main specialties and b. examine

the current perspectives and challenges of these applications,

considering the limitations, ethical complexities, and impor-

tant methodological guidelines for AI-related studies.
Applications of AI in dentistry

AI and orthodontics

In orthodontics and dentofacial orthopedics, AI algorithms

have been utilized in various applications over the last 2 dec-

ades paving the way for an automated digital diagnostic and

prognostic approach in clinical care. Cephalometric analysis

is an integral part of orthodontic diagnosis and treatment

planning, playing a pivotal role in the success of the treat-

ment. The assessment of lateral cephalograms is mainly per-

formed for sagittal evaluation of skeletal and dentoalveolar

relationships, analysis of the soft tissues of the face, changes

that occur during treatment procedures, and estimation of

growth patterns and development. The conventional way of

cephalometric analysis is through manual landmark identifi-

cation, which is time-consuming and associated with a high

potential for error and bias. Due to the digital evolution of the

last decades and the progress of computational techniques,

we are now pacing rapidly towards a fully automated analysis

of the cephalograms. Recently developed AI-based models,

utilizing ML and DL algorithms, have demonstrated consis-

tently high accuracy in detecting cephalometric landmarks in

2D images. However, their performance in 3D imaging

remains an area requiring further improvement. These tools

hold promise for assisting practitioners by minimizing sub-

jective errors and saving time.17-22 Despite the high expecta-

tions for the daily use of DL algorithms in clinical practice,

the overall evidence is of limited generalizability and

robustness.23

The patient’s stage of skeletal growth is of critical impor-

tance in orthodontics because it determines the optimal time

for intervention and in consequence the achievement of a

successful morphologic result within optimal treatment

duration. A valid diagnostic method used widely for the iden-

tification of the growth curve and the skeletal maturity of the

patient is the radiographic evaluation of the cervical verte-

brae maturation (CVM). However, it requires not only special-

ized skills but also a great deal of time. Addressing a need for
an automated and accurate analysis of the CVM stage, AI

algorithms have been tested on lateral cephalograms demon-

strating satisfying performance.24-31

Besides landmark tracing and CVM assessment, DL CNNs

have also been used on lateral cephalometric radiographs for

the automated diagnosis of adenoid hypertrophy in children,

exhibiting accurate results and reliable performance.32 Artifi-

cial intelligence is also being used in orthodontics for teeth

segmentation, superimposition of dental arches, and airway

analysis on 3D imaging. A very important usage of artificial

intelligence software is the automatic tooth segmentation in

digital dental models. DL-based automatic tooth segmenta-

tion of a digital model demonstrates a great success rate,

accuracy, and efficiency in tooth segmentation. Therefore, it

may be used for orthodontic diagnosis and appliance fabrica-

tion. A great application of artificial intelligence in orthodon-

tics is the superimposition of dental casts to assess tooth

movement during or after orthodontic treatment. According

to the present literature, in comparison to other software

types, semiautomatic best-fit registration software regularly

shows outstanding agreement in superimpositions. Com-

pared to other methods, automatic best-fit registration soft-

ware consistently showed superior agreement for

mandibular superimpositions. The quantification algorithm

used in superimposition investigations can be credited with

the accuracy of digital model superimpositions for tooth

movements. Lastly, artificial intelligence can be used to auto-

matically segment and analyze the airway. Due to a success-

ful AI technique, the pharyngeal airway may now be

automatically segregated from CBCT images. According to

the existing literature, automatic segmentation techniques

can be effectively employed in clinical settings to assist with

tasks like orthodontic diagnosis and appliance fabrication,

offering high accuracy and efficiency compared to traditional

methods; this is because it seems to be quick and simple to

use while also measuring the airway with great accuracy.33-35

Another important aspect regarding the orthodontic treat-

ment plan is whether to extract permanent teeth or not. The

decision to extract requires the analysis of multiple variables

including cephalometric measurements, clinical findings

(maxillary and mandibular crowding, overjet, overbite), peri-

odontal condition, facial esthetics (lip protrusion) as well as

the patient’s systemic health.36,37 Be that as it may, this deci-

sion depends entirely on the practitioner’s training, clinical

experience, and treatment philosophy and that is why there

is a considerable disagreement regarding the judgments on

tooth extractions delivered by orthodontists. To bridge that

gap, AI-based models, using ML algorithms have been utilized

on clinical, radiographic, and demographic data to facilitate

the clinical decision-making process. The models demon-

strated high accuracy and efficient performance not only for

the binary decision extraction/no extraction but also for other

possible outcomes.38-43

AI and periodontology

Periodontitis is a bacterial-driven chronic inflammatory dis-

ease of the tissues surrounding and supporting the dental

root. The continuous progression of periodontitis results in

the destruction of all periodontal tissues including the
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alveolar bone, gingiva, and periodontal ligament around the

tooth. Early detection and correct identification of periodontal

diseases could avert the onset of tooth loss, prevent systemic

diseases related to periodontitis, and reestablish patients’

oral health. To develop efficient diagnostic models for the

classification of periodontitis, researchers utilized ML algo-

rithms. The algorithms were trained and tested on clinical

indexes, radiographic measurements, demographic data as

well as immunologic parameters. The models demonstrated

satisfying performance in diagnosing the grades of periodon-

tal disease,44,45 classifying patients belonging to either

aggressive periodontitis or chronic periodontitis,46 assessing

the progression of the disease, and determining its severity

degree.47 AI research in periodontology also includes the

development of DL models, using convolutional neural net-

work (CNN) algorithms. Deep CNNs were applied on pan-

oramic radiographs for the detection of periodontal bone

loss48, and additionally on periapical radiographs for the diag-

nosis of periodontally compromised teeth, achieving high

discriminating and diagnostic ability, matching that of

trained specialists.49 Periodontal disease is linked to systemic

health diseases, such as cardiovascular disease, stroke, osteo-

porosis, and diabetes. In a novel approach, a DL convolutional

neural network was combined with intraoral fluorescent bio-

marker imaging and clinical examinations, developing an

automated process for oral health screenings and the correla-

tion of systemic health conditions and periodontitis.50

AI and restorative dentistry and prosthodontics

Treatment planning is one of the most challenging aspects of

clinical practice, requiring an accurate diagnosis and evalua-

tion of the prognosis. The prognosis of the teeth depends on

several patient-specific variables as well as a multidisciplin-

ary analysis of the oral structure. An AI-based system, using

ML algorithms, was designed to facilitate clinical decision-

making regarding tooth prognosis, taking the ideal treatment

plan into account.51 Following the correct assessment of

prognosis, the subsequent decision for teeth extractions is

also a critical part of the developing treatment plan and its

long-term success. In another approach, a clinical decision

support (CDS) system utilized ML algorithms on electronic

dental records, to determine appropriate tooth extraction

therapy in clinical situations. The model achieved high per-

formance, outperforming 2 trained prosthodontists.52 Restor-

ative materials, such as composite resins (CR), amalgams,

metals, and ceramics are routinely used in clinical practice.

However, the lifespan of these restorations is limited,

depending on the material used and the characteristics of the

tooth’s cavity and remaining walls. In that scope, a case-

based reasoning tool, utilizing a neural network for the classi-

fication of CR and amalgam restorations, was developed to

predict the longevity of these restorations.53 As CAD/CAM

restorations are used more and more in clinical practice, the

need to prevent debonding and improve the survival rate of

these restorations is increasing. Addressing this issue, a DL

CNN was used to predict the debonding probability of CAD/

CAM CR crowns, demonstrating considerably accurate perfor-

mance.54 In restorative dentistry, matching the color of a

ceramic restoration with a natural tooth is a challenging task.
To this end, a method that enhances the prediction and preci-

sion of color matching, using a genetic algorithm and back

propagation neural network, was developed.55 The aesthetic

outcome of the maxillary anterior region is of critical impor-

tance for both the patient and the dentist. To achieve a better

outcome, it is essential that the dentist performs a compre-

hensive examination and analysis of the aesthetic zone. An

aesthetic region teeth segmentation algorithm based on cur-

vature analysis and active contour was designed, to facilitate

automated smile analysis, exhibiting high accuracy rates.

Due to the limitations of the model, further research is

needed.56

AI and oral and maxillofacial surgery

Oral squamous cell carcinoma (OSCC) constitutes the major

neoplasm of the head and neck region, exhibiting a quite

aggressive nature, often leading to unfavorable prognosis.

Although current advances in treatment protocols have suc-

cessfully tackled the disease, a substantial percentage of

affected patients suffer from relapses, due to the deeply infil-

trated nature of these tumors.57 Early identification of a

potential disease reoccurrence and accurate modeling of the

disease progression can be very beneficial for the prognosis

of the patient.58

To this end, ML algorithms have been applied to clinico-

pathologic data, imaging data, and genomic markers for the

development of an oral cancer prognostic model, demon-

strating superior performance with measurable improve-

ments in accuracy, sensitivity, and specificity compared to

current standard methods.59,60 In addition, most cases of

OSCC are in an advanced stage when diagnosed, which sig-

nificantly affects the survival rate after the surgical treat-

ment. Early detection of OSCCs could lead to an overall better

curative outcome as well as lower recurrence rates. In a novel

approach, DL CNNs exhibited satisfying performance when

applied on laser endomicroscopic images for the automatic

classification of cancerous lesions.61 DL CNNs have also been

applied to CT scans for the evaluation of extra-nodal exten-

sion of cervical lymph node metastases in patients with

OSCC.62

Bisphosphonates are routinely prescribed for the manage-

ment of osteoporosis, reducing fracture risk at various skele-

tal sites. However, some unexpected possible adverse effects

have been reported, including osteonecrosis of the jaw. Tooth

extraction is considered one of the risk factors for bisphosph-

onate-related osteonecrosis of the jaw (BRONJ) and its avoid-

ance is recommended.63-65 Nevertheless, in some cases is

necessary due to the possibility of more severe infections.

Five types of ML models were designed to predict the occur-

rence of BRONJ associated with dental extractions, demon-

strating considerable accuracy.66

In implant dentistry, the assessment of bone density is an

integral part of the surgical treatment plan, influencing the

overall success rate of the treatment.67 A new approach intro-

duced a CNN-based method for the automatic classification

of the alveolar bone density utilizing 3D volumetric data in

CBCT images.68 Extraction of impacted mandibular third

molars is one of the most common oral surgical procedures.

The amount of postoperative facial swelling that follows third
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molars removal varies depending on gender, age, the degree

of impaction, surgical technique, and operating time.69,70 To

predict postoperative facial swelling, an artificial neural net-

work was trained and tested on patients’ clinical and demo-

graphic data, achieving a highly accurate performance.70
AI and endodontics

Vertical root fractures (VRFs) are one of the most challenging

situations in clinical practice not only to diagnose accurately

but also to treat conservatively. Besides clinical signs and

symptoms, the diagnosis of a VRF is based on the radio-

graphic identification of a fracture line. Although detectabil-

ity of VRFs is reported to be higher in CBCT images rather

than conventional periapical or panoramic radiographs,71,72

it remains a difficult task and depends on the diagnostic per-

formance of these radiographs as well as the experience of

the dentist.72 Not to mention that the increased radiation

exposure, the high cost and artifacts resulting from root canal

treatment materials73 constitute an additional barrier to the

everyday use of CBCT scans. Taking all the above into consid-

eration, in the last decade, researchers developed ML models

that can automatically detect and diagnose VRFs on pan-

oramic, periapical, and CBCT radiographic images.74-76

Accurate working length determination is a crucial factor

for the success rate of a root canal treatment.77 The correct

working length, where the biomechanical preparation and

the root canal filling should terminate, is at the minor apical

foramen.78 In a new approach for locating the minor apical

foramen, an artificial neural network was trained and tested

in radiographs of single-rooted teeth both ex vivo and in

human cadavers.79,80 The model demonstrated a highly accu-

rate performance, significantly outperforming endodontists’

estimations.

The distal root of the mandibular first molar occasionally

has a second root, which if overlooked can affect the outcome

of the endodontic therapy. A DL system was used on pan-

oramic radiographs to assess the root morphology and deter-

mine the number of distal roots of mandibular first molars,

achieving high diagnostic performance.81

Apical periodontitis is defined as an inflammatory process

around the apex of the tooth root and is detected radiographi-

cally as apical lesions (a widened periodontal ligament or a

clearly detectable lesion). A deep convolutional neural net-

work was applied on panoramic radiographs to detect and

classify apical lesions, demonstrating satisfactory discrimi-

natory ability.82

One of the most crucial parts before an endodontic ther-

apy is the correct assessment of the case difficulty and its

subsequent prognosis. The American Association of Endo-

dontists (AAE) case difficulty assessment form is a standard

form that provides a template for general dentists to objec-

tively assess the difficulty of a case and decide for a referral

to a specialist or not. ML algorithms were trained and tested

on a dataset of endodontic cases using the AAE form to auto-

matically estimate the difficulty level of these cases, exhibit-

ing an accurate performance. The model can be employed in

clinical practice, increasing the speed of decision-making and

referrals if necessary.83
AI and oral and maxillofacial radiology

DL-convolutional neural networks (CNNs) have been applied

in numerous applications in oral and maxillofacial radiology,

as they represent a state-of-the-art approach for recognizing

and analyzing patterns in various radiographic images. Den-

tal caries is one of the most prevalent oral health problems.

Conventional caries detection involves oral examination and

the use of the dental probe for clearly visible lesions, and

dental radiographs for detecting hidden or inaccessible

lesions. However, early detection of caries, which would

reduce the need for invasive procedures, could benefit from

the introduction of new methodologies and tools.84 In that

scope, in the last years several researchers have aimed to

develop efficient models, using DL algorithms, mainly CNNs,

for caries detection. Periapical radiographs,85 bitewings,86

and near-infrared transillumination images87,88 have been

used for training and testing these algorithms. The AI-based

models demonstrated satisfying performance, suggesting

that these applications may find use in clinical practice

assisting dental practitioners and increasing the accuracy of

caries detection.

Another field in oral radiology where ML algorithms have

been utilized is for the detection of osteoporosis. Dental pan-

oramic radiography is widely considered as a cost-efficient

way for detecting osteoporotic changes. Panoramic mandibu-

lar indices such as gonion index, mandibular cortical index,

mandibular cortical width, etc. have been developed to assess

the quality of mandibular bone mass and detect signs of

resorption. Early detection of osteoporosis, especially to

asymptomatic patients, is a difficult task for the general den-

tist. To that end, deep CNN methods have been designed to

process efficiently panoramic X-ray images and provide infor-

mation to clinicians for early identification of osteoporosis.89-

91. Thus, contributing to the early referral of the patient to

appropriate medical professionals.

Conventional 2-dimensional panoramic radiographs are

the most routinely used imaging technique to assess the ori-

entation of mandibular third molars and their relationship to

the mandibular canal. In a promising approach, deep-learn-

ing CNNs were applied to orthopantomograms for an auto-

mated calculation of the proximity of mandibular third

molars to the inferior alveolar nerve (IAN).92 Consequently,

an AI-based method was created, to assess the risk of IAN

injury that follows third molar removal.

In another innovative research CNNs were used to auto-

matically measure the angulation of mandibular third molars

to predict their eruption chances.93

Temporomandibular joint osteoarthritis (TMJOA) is an

important subtype of temporomandibular disorders, and its

pathology includes progressive cartilage degradation, masti-

catory dysfunction, and pain.94 TMJOA is confirmed by struc-

tural bony changes observed on computed tomography (CT)

scans, cone beam CT (CBCT) images, and panoramic radio-

graphs. Taking into consideration that accurate diagnosis of

TMJOA during the early stages of the disease is both challeng-

ing and crucial, DL algorithms have been developed to auto-

matically detect and classify TMJOA in CBCT images95,96 and

orthopantomograms (OPGs),97 supporting clinicians in the

decision-making process.98
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ML and DL algorithms have also been successfully imple-

mented for diagnosing maxillary sinusitis on panoramic

radiographs99,100 and for identifying Sjogren’s syndrome on

CT scans,101 demonstrating high diagnostic performance as

well as comparable efficiency with that of radiologists. They

have yielded a highly accurate performance for detecting

dental restorations102 and recognizing supernumerary

teeth103 on panoramic radiographs. Lastly, CNN-based sys-

tems have achieved an excellent performance for teeth detec-

tion and segmentation on panoramic radiographs to

automate dental charting purposes and improve the clinical

workflow.104-107

AI and pediatric dentistry

Detection and control of dental plaque is a critical aspect of

preventing oral diseases and maintaining children’s oral

health. Addressing the need for a cost-effective and conve-

nient technique to objectively detect and quantify dental pla-

que, an innovative AI model was designed to detect plaque

on primary teeth. Deep-learning CNNs were trained and

tested on a dataset of intraoral photos of deciduous teeth.

The model showed clinically acceptable performance, like

that of an experienced pediatric dentist.108 Panoramic radiog-

raphy is used routinely in pediatric patients, mainly for evalu-

ation of the stages of dentition and dental abnormalities.

Taking a step towards a digital diagnostic approach, a DL

algorithm was used on panoramic radiographs for the auto-

mated detection and numbering of deciduous teeth, exhibit-

ing a highly accurate performance.109

AI and forensic odontology

Forensic odontology is a specialized field of dentistry that

involves the management, examination, evaluation, and pre-

sentation of dental evidence in criminal or civil proceedings,

all in the interest of justice. It also plays a pivotal role in the

identification of the victims of multifatality disasters (natural

disasters, nuclear disasters, etc.) and generally in cases of

decomposed, charred, or skeletonized bodies.110 In that

frame, age estimation, gender determination, and facial

reconstruction are subdisciplines of the forensic sciences

that constitute an important part of the identification pro-

cess, especially when information relating to the deceased is

unavailable. In recent years some researchers focused on

developing automated identification models using artificial

intelligence algorithms for the scope of enhancing these

forensic processes.111,112 The models exhibited promising

performance, opening a new field for AI research.
Current perspectives and challenges

AI-related studies and research in the field of dentistry are

increasing rapidly in the last decade.113 The adoption of ML

algorithms has stimulated the development of automated

diagnostic and prognostic models that support clinicians in

the provision of personalized, high-quality dental care and

simultaneously relieve the workforce from laborious
tasks.114 AI-based applications signal the digital transforma-

tion of dental medicine and can contribute to the manage-

ment of current and upcoming challenges in oral

healthcare. Nevertheless, despite the high expectations and

all the potential around AI research, there are also concerns

regarding the applicability and generalizability of the results

that several studies present as well as the ethical challenges

that coexist with them.114 Until recently, the widespread

implementation of AI in routine dental practices was not

technically possible or financially viable, so the potential of

AI has not been fully realized in the field.115 The first imple-

mentations of CNNs are just entering the clinical work-

space, but on a large scale, AI applications have not been

integrated into routine care.116 Many studies suffer from

methodological weaknesses and reporting limitations and

as the spectrum of applications in dentistry broadens, it is

crucial to examine these flaws and explore a more robust

way of conducting AI research.117

Addressing the limitations

Data collection and spectrum bias
The data collection methodology is of critical importance

since the various data resources constitute the elements on

which the AI algorithms are trained, validated, and tested.

Authors and reviewers should be aware of certain pitfalls and

biases that occur in AI research.118,119 An imbalanced data

collection process or insufficient reporting of the data resour-

ces may result in a dataset that does not entirely represent

the possible clinical and demographic characteristics of the

task at hand. To alleviate spectrum bias, data should be of

sufficient quality and representative of the target population

and settings of the application.118

Overfitting and selection or discriminatory bias
Using narrow and limited datasets, which is common in dental

research, can lead to the development of algorithms that

appear efficient and accurate but fail to generalize well to new,

unseen data. To ensure more robust models,120 researchers are

advised to use larger and more diverse sample sizes. Addition-

ally, data snooping bias can occur when similar or identical

data is used in both the training and test sets, resulting in artifi-

cially inflated algorithm performance.114,119 In such cases, the

model may simply memorize the data from the training set,

leading to misleadingly high performance on the test set. To

avoid this, it is recommended that AI algorithms be validated

using an independent, external dataset. Additionally, when

splitting data for training and testing, care should be taken to

account for clustering effects, such as ensuring that multiple

images from the same patient are not split across both sets,

which could artificially inflate performance metrics.120 Inac-

cessible, missing, or inadequate data, from electronic health

records, could impair the sampling process. By interpreting

only the available data, algorithms may exclude individuals

with missing data and typically overrepresent the majority

while underrepresenting minorities. It is of critical importance

that AI studies ensure diverse and representative datasets to

avoid the risk of bias and be reliable across different

populations.120
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“AI-chasm” and lack of transparency
Describes the gap between an AI-based model and its practi-

cal real-world application. The metrics chosen to optimize

themodel along with an unclear training and validation strat-

egy may not reflect clinical applicability.119 In other words,

designing an accurate system that does not necessarily mean

that is clinically applicable. Designing an effective algorithm

on a small dataset from a specific population differs signifi-

cantly from developing an algorithm that can be imple-

mented across different populations and clinical settings.121

The difficulty in interpreting and explaining how highly com-

plex algorithms make certain decisions has led many

researchers to acknowledge that neural networks mostly

remain a “black box”.122 Failure to explain understandably

the decision-making process that ML models follow impedes

practitioners’ trust in clinical AI. Given that many AI applica-

tions use highly complex prediction models, researchers

should aim to provide elements of explainable AI in their

studies,123 so that patients and healthcare providers can

understand how they work and how they make decisions. As

a result, there has been a growing interest in creating techni-

ques to display, clarify, and comprehend DLmodels.124
Planning and reporting AI research

Inconsistent data quality, risk of bias and limited evidence to

support the clinical effectiveness of AI are significant issues

that impair the quality of the studies and compromise the effec-

tive integration of the applications into routine clinical prac-

tice.125 The impressive array of studies necessitates that a more

robust, high-quality methodological process for planning, con-

ducting, and reporting of AI research should be followed.117,123

Despite the limited amount of published randomized clinical

trials in AI, authors are encouraged to consult guidelines like

the extensions of the CONSORT (CONsolidated Standards Of

Reporting Trials)126 and SPIRIT (Standard Protocol Items: Rec-

ommendations for Interventional Trials)127 statements in AI for

reporting RCTs and RCTs protocols respectively. Additional

guidelines, although they don’t focus on AI, that could be of use

include the TRIPOD (Transparent Reporting of a multivariable

prediction model for Individual Prognosis Or Diagnosis)128

statement that is designed to improve the reporting of studies

developing a prediction model, the STARD (STAndards for

Reporting of Diagnostic accuracy studies)129 statement that

aims to enhance the quality of reporting of diagnostic accuracy

studies. Researchers are also advised to employ tools like the

QUADAS-2 (QUality Assessment of Diagnostic Accuracy Stud-

ies)130 that is applied to systematic reviews or the PROBAST

(Prediction model Risk Of Bias ASsessment Tool)131 to estimate

and potentiallymitigate the risk of bias.

A recently published checklist that is addressed to authors,

reviewers, and readers of dental research in AI can serve as an

instructional map to assist researchers designmore robust and

transparent studies, raising the standards in the field.132

Indicatively, it is worth noting that when considering the

development of an AI-basedmodel, researchers are advised to:

� define themeaning and scope of the application (diagnostic

or prognostic),
� use high-quality, adequately sized datasets that are as het-

erogeneous as possible to strengthen generalizability,
� construct a solid reference test, probably using several

independent annotators to label the data,
� consider clustering of teeth or patients to minimize data

snooping bias,
� use an independent external dataset to test the algorithm

to ensure generalizability,
� assess the computational resources needed, as they play a

pivotal role in the processing of the data,
� compare the model against relevant alternatives (dental

experts or other models).

As far as the reporting methodology, it is recommended to:

� provide an overview of the study goal,
� describe the structure of the model (input-output layers,

etc.)
� report all the data resources and explore the possibility of

bias,
� describe the chosen method to train, validate, and test the

model,
� describe the results and clarify the performance metrics on

all data partitions,
� explain the clinical applicability of the model,
� discuss not only the strengths but also the limitations of

the application [132].

Planning reproducible and transparent studies and

designing effective and applicable models are of utmost

importance to foster trust in clinical AI and utilize the bene-

fits of its use. To this end, it is also critical to identify the ethi-

cal challenges that emerge in AI research.133

Ethical concerns

A major concern that is frequently addressed, especially in

the era of digitalization with the adoption of vast amounts of

electronic health records, is the patient’s privacy and

confidentiality.134,135 As AI systems are integrated into

healthcare systems, there is an increased risk of data

breaches or misuse of patient information. This could lead to

unintended harm to patients and erosion of trust in health-

care providers. Furthermore, there are concerns about

accountability and transparency in the decision-making

process.119,122 If an AI algorithm makes a mistake or produces

an unexpected outcome, it may be difficult to determine who

is responsible and how to rectify the situation. This lack of

accountability could undermine patient trust in the health-

care system. Other concerns that need to be tackled include

the integration of AI in clinical practice, as a supporting tool

and not a substitute for the clinician, the role of AI in the edu-

cation and training of medical and dental students136 as well

as the legal conflicts that may arise with the use of AI in

healthcare.134 An additional concern, in terms of geographic

distribution and AI-related studies, is that data show a promi-

nent representation of more economically developed coun-

tries and an underrepresentation of certain geographic areas,

indicating that AI advances are not accessible to all.137 By

sharing more openly their data and algorithmic codes,

research teams can contribute to moderating this phenome-

non. When considering ethics and AI research in dentistry, 6
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main principles arise prudence, privacy, responsibility, dem-

ocratic participation, solidarity, and equity.138 It is important

to highlight that most of the studies do not provide access to

the data nor to the code developed, limiting the overall repro-

ducibility of corresponding research in the field. Most of the

studies are validated only internally, thus increasing the bias

associated with them. And lastly, only a small number of

studies report ethical concerns, depicting that the medical

community remains widely uninformed about the ethical

complexities that emerge around AI research.138
Discussion

Benefits of AI

Artificial intelligence (AI) is already shaping the dental land-

scape by revolutionizing the way professionals diagnose and

treat oral health problems. Some of the primary ways in

which AI is making an impact in dentistry are:

Accurate diagnosis and personalized treatment planning
AI algorithms can analyze dental radiographic images, such

as panoramic and cephalometric radiographs, CBCT scans,

periapical radiographs, and bitewings, to detect oral health

problems like caries, periodontal disease, root fractures,

TMJOA, oral cancer, etc. These powerful tools assist clinicians

in making more accurate diagnoses and providing more

effective treatments. By analyzing patient data, such as medi-

cal history, clinical indexes, and radiographic features, AI

algorithms can consider the patient’s unique characteristics

and recommend the best course of treatment. This can help

practitioners provide more targeted and personalized treat-

ments.

Prognostic analysis and Improved efficiency
By identifying patterns in patient data AI algorithms can also

inform treatment decisions, prevent oral health problems, or

predict treatment outcomes. Highly accurate prognostic mod-

els have been developed to estimate tooth decay, periodon-

tally compromised teeth, the need for orthodontic

extractions, the risk for postoperative facial swelling follow-

ing third molar removal, the risk for BRONJ, etc. These models

can assist professionals in the treatment planning and deci-

sion-making process. AI can help dental practices operate

more efficiently by automating tasks like appointment sched-

uling, and patient follow-up, while also improving the accu-

racy of dental charting and treatment recommendations. AI

can help to reduce the burden of administrative tasks, freeing

up time for dentists to focus on providing high-quality patient

care.139

Fostering trust in AI

As we discussed, besides the benefits that the advancement

of AI offers in the field of dentistry, a few concerns have also

emerged along with them. Insufficient data collection pro-

cesses, risk of bias, reporting limitations, lack of transpar-

ency, and lack of understanding of how to effectively

incorporate AI into the clinical arena, are significant issues
that need to be addressed. To overcome these barriers and

produce more robust and reproducible results a multifaceted

approach is required. It is strongly recommended that studies

in AI follow methodological and ethical guidelines that

include standards for data quality, transparency, privacy,

accountability, and replicability.123,132 Additionally, it is

essential to establish a comprehensive framework for data

sharing and collaboration, invest in the development of AI

technologies that are tailored to healthcare needs, and pro-

mote a culture of innovation and experimentation in health-

care organizations.140 Discussing the concerns that arise,

exploring possible solutions, and developing clinically vali-

dated AI technology, will ultimately facilitate the integration

of ML models in the clinical workflow and help both practi-

tioners and patients understand the role AI can play in

healthcare.
Reshaping dental health landscape

The rising costs of dental care and a growing number of

patients unable to access necessary treatments, coupled with

the increasing healthcare needs of an aging population, dem-

onstrate the pressing need for a new and sustainable model of

dental care.141 The integration of digital technology presents a

highly encouraging tactic for transforming the field of oral

healthcare. Utilizing modern technology, along with the

advancement of ML algorithms in dental medicine, presents

an occasion to shift away from a "disease-focused" model and

towards a patient-centered approach to care, which represents

a significant change. To enhance patient-centered outcomes,

dental research should prioritize connecting oral and general

health and advancing personalized medicine. Instead of solely

generating scientific publications, dental research should focus

on delivering a tangible impact to society by implementing

changes to clinical protocols. 142 The appropriate integration of

AI into clinical workflow can provide clinical patterns and

insights beyond human capabilities and reduce the burden of

integrating vast amounts of health data into clinical practice.

This can free clinicians to focus on placing insights into clinical

context and attending to patient’s needs to achieve optimal

health.125,139 A new popular term has emerged: augmented

intelligence.125,142 This refers to the integration of digital tools

with human qualities and capabilities to enhance dental and

oral healthcare and ultimately improve quality of life. The

blending of AI and human intelligence, or augmented intelli-

gence, is considered the most effective method for achieving

the core objective of healthcare.
Conclusions

A variety of diagnostic and prognostic AI-based models have

been developed in almost every specialty of dental medicine.

These models utilize ML algorithms and have the potential to

revolutionize the way we perform treatment planning as well

as enhance the way we provide nonbiased, accurate person-

alized dental care. Nevertheless, the medical community

should be aware of the challenges and pitfalls that emerge to

maximize the opportunities to reshape the field and improve
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dental care, while steering clear of the possible negative con-

sequences.
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